The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria
نویسندگان
چکیده
BACKGROUND Whereas most bacteria move by means of flagella, some prokaryotes move by gliding. In cyanobacteria, gliding motility is a slow uniform motion which is invariably accompanied by a continuous secretion of slime. On the basis of these characteristics, a model has been proposed in which the gliding motility of cyanobacteria depends on the steady secretion of slime using specific pores, as well as the interaction of the slime with the filament surface and the underlying substrate. RESULTS The structures of the pore apparatus of two different filamentous cyanobacteria have been characterized. In both species, pores are formed by a hitherto uncharacterized type of prokaryotic organelle that spans the entire multilayered cell wall and possesses structural properties expected for an organelle that is involved in the rapid secretion of extracellular carbohydrates. Light microscopic observations of the secretion process provided direct evidence that the pore complexes are the actual sites of slime secretion, that the secreted slime fibrils are elongated at about the same rate as the filament glides (up to 3 micrometer s-1), and that gliding movements are caused directly by the secretion of slime. CONCLUSIONS It has been known for a long time that carbohydrate secretion has an important role in the gliding motility of various prokaryotes. Our results strongly suggest that slime secretion is not only a prerequisite for this peculiar type of motility in cyanobacteria, but also directly generates the necessary thrust for locomotion.
منابع مشابه
The junctional pore complex and the propulsion of bacterial cells.
Gliding motility is defined as translocation in the direction of the long axis of the bacterium while in contact with a surface. This definition leaves unspecified any mechanism and, indeed, it appears that there is more than one physiological system underlying the same type of motion. Currently, two distinct mechanisms have been discovered in myxobacteria. One requires the extension, attachmen...
متن کاملThree-dimensional structure of Mycoplasma pneumoniae's attachment organelle and a model for its role in gliding motility.
While most motile bacteria propel themselves with flagella, other mechanisms have been described including retraction of surface-attached pili, secretion of polysaccharides, or movement of motors along surface protein tracks. These have been referred to collectively as forms of 'gliding' motility. Despite being simultaneously one of the smallest and simplest of all known cells, Mycoplasma pneum...
متن کاملHow Myxobacteria Glide
BACKGROUND Many microorganisms, including myxobacteria, cyanobacteria, and flexibacteria, move by gliding. Although gliding always describes a slow surface-associated translocation in the direction of the cell's long axis, it can result from two very different propulsion mechanisms: social (S) motility and adventurous (A) motility. The force for S motility is generated by retraction of type 4 p...
متن کاملPolymer confinement and bacterial gliding motility.
Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the com...
متن کاملProkaryotic motility structures.
Prokaryotes use a wide variety of structures to facilitate motility. The majority of research to date has focused on swimming motility and the molecular architecture of the bacterial flagellum. While intriguing questions remain, especially concerning the specialized export system involved in flagellum assembly, for the most part the structural components and their location within the flagellum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 8 شماره
صفحات -
تاریخ انتشار 1998